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Computation of Convergence Bounds for Volterra
Series of Linear-Analytic Single-Input Systems

Thomas Hélie and Béatrice Laroche

Abstract—In this paper, the Volterra series decomposition of a
class of single-input time-invariant systems, analytic in state and
affine in input, is analyzed. Input-to-state convergence results are
obtained for several typical norms � ��� �� , � �� as well
as exponentially weighted norms�. From the standard recursive
construction of Volterra kernels, new estimates of the kernel norms
are derived. The singular inversion theorem is then used to obtain
the main result of the paper, namely, an easily computable bound
of the convergence radius. Guaranteed error bounds for the trun-
cated series are also provided. The relevance of the method is illus-
trated in several examples.

Index Terms—Approximation methods, functional analysis,
nonlinear dynamical systems.

I. INTRODUCTION

V OLTERRA series is a functional series expansion of the
solution of nonlinear controlled systems, first introduced

by the Italian mathematician Volterra [25]. This tool has been
extensively used in signal processing and control, electronics
and electromagnetic waves, mechanics and acoustics, biomed-
ical engineering, for modeling, identification, and simulation
purposes. There exists a vast literature concerning Volterra se-
ries. Among others, they were studied in [5], [10], [11], [13],
and [19] from the geometric control point of view, and in [9],
[23], and [24] from the input–output representation and realiza-
tion point of view.

However, only a few results on the convergence are available,
and most of them require the computation of kernel norms or
asymptotic bounds. In [6], the existence of a nonzero conver-
gence radius for complex linear analytic systems with no initial
conditions is proved and a convergence criterion is given for in-
variant real bilinear systems. In [19] and [21], theoretical and
local-in-time results are given for control systems, affine in the
input, with analytic dynamics and piecewise continuous inputs.
Existence results of a convergence radius for continuous inputs
are also given in [2] for fading memory systems, and in [14]
for results in -spaces. More recently, results in the frequency
domain have been developed in [20] and [22], results relying on
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regular perturbations (which can be related to Volterra series ex-
pansion) are given in [7], and results for quadratic systems have
been established in [16].

This paper focuses on the computation of guaranteed con-
vergence bounds for the input-to-state Volterra series expansion
of a class of single-input time-invariant systems. These systems
are assumed to be finite-dimensional, analytic in state, affine in
input, with zero initial conditions. The convergence bounds are
obtained for several norms for the input and the state: 1) the

norm is considered to establish bounded signal results
for systems with a stable linear part; 2) norms for

makes it possible to relax the convergence condition in-
cluding for systems with an unstable linear part; 3) an adapted
weighted norm is also considered to tackle exponentially fading
memory systems.

The paper is organized as follows. Section II defines the nota-
tions, the functional setting, and the class of systems under con-
sideration and recalls some general definitions and basic prop-
erties of Volterra series. Section III establishes the convergence
results and guaranteed truncation error bounds for norms.
These results are illustrated by several examples in Section IV.
Section V extends the results of Section III to weighted norms
adapted to exponentially fading memory systems. Finally, con-
clusions and perspectives are given in Section VI.

II. GENERAL FRAMEWORK

A. Notations and Functional Setting

The following notations are introduced, where
( ) and are real normed vector spaces.

• is the vector space of continuous linear
functions from an to with norm

, where is the unit ball in .
• is the vector space of continuous

multilinear functions with norm

• denotes the set
.

The following function spaces are used in the sequel.
• denotes the time interval with or .
• and are the standard Lebesgue

spaces.
• for is the set of functions

such that
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with norm , where
denotes the Lebesgue’s measure .

B. System Under Consideration

The systems under consideration are analytic systems with
zero initial conditions and an affine dependence on the input,
that is, for

(1)

(2)

(3)

where , , with
finite dimensions , , where is an real
matrix, is a nonzero real matrix, is analytic at ,
and where and are analytic functions expressed as a series
of homogeneous contributions

(4)

(5)

with and . Note
that these systems correspond to the class of so-called “linear
analytic systems” or “affine systems” (see [6] and [8])

where we set and . As
stated in Section VI, some of the previous hypotheses such as
zero initial conditions, single input, and “affine in input” will be
relaxed in future works.

Definition 1 (Weak and Bounded Solutions): Let
and . Let . A function

is a weak solution of (1) and (3) if the following
apply.

1) is absolutely continuous on all bounded intervals of
and .

2) Equation (1) is satisfied almost everywhere, and (3)
holds.

Moreover, is said to be a bounded solution if it is a weak
solution and it belongs to .

Remark 1: If is in the analytic domain of almost
everywhere, then is also bounded almost everywhere.

Then, in the sequel, we focus on the input-to-state system.

C. Volterra Series: General Definitions and Basic Properties

We restate the standard definition of the Volterra series [3].
Definition 2 (Volterra Series): Let denote the set of se-

quences of kernels such that for all ,
, where . A causal SI-system can be described by

an input-to-state Volterra series if there exist
and such that for all input satisfying ,
the series

(6)

defined for , with , is normally
convergent for the norm . For , the function is
called the kernel of order .

Remark 2: The input-to-output Volterra series of the
system (1)–(5) can be deduced from its input-to-state Volterra
series by substituting (6) in (2).

Definition 3 (Gain Bound Function): Let
be such that convergence radius of the formal series

belongs to . Then, the gain bound
function of is defined for all such that

by

Theorem 1 (Bounded-Input Bounded-State Relation): Let
be such that the gain bound function has a

nonzero radius of convergence . Then, the Volterra series
is convergent in for inputs such that . In this case,

satisfies .
Proof: Let be such that . Then,

. Now, for all ,

Hence, the series con-
verges normally in the Banach space to a limit such that

D. Recursive Construction of Kernels

Definition 4 (Index Set and Selection Function): Let
and . The set is defined by

Moreover, for all and for all , the selec-
tion function is defined by, denoting

Note that if , then .
Following [3], [4], [11], and [23], a recursive construction

algorithm for the kernels associated to the system described by
(1)–(5) is given.

Proposition 1 (Kernels Recursive Construction): Let the
family of kernels be defined by
with
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and for all , with

where denotes the Heaviside function and

(7)

(8)

Then, the series (6) is a formal solution of system (1)–(5).

III. MAIN CONVERGENCE RESULTS

In this section, a computable lower bound of the conver-
gence radius of the Volterra series introduced in Proposition 1
is given (Theorem 2). The resulting algorithm is fed by the norm
of the dynamics of the linearized problem and norms of the mul-
tilinear operators ( , ), but it does not require any iterative
kernels norm estimation. The infinite sum is a bounded solution
of problem (1)–(5) in the sense of Definition 1 (Theorem 3).
Finally, a bound on the remainders is given in
Theorem 4, where denotes the sum of the Volterra series
truncated at order .

Hypothesis 1: The system (1)–(5) is such that
belongs to ; that is, is supposed to be Hurwitz if

, and there is no assumption on if is a finite interval
.

Then, the following function can be introduced.
Definition 5: The function is formally defined by

(9)

where, defining , for all

(10)
Remark 3: This definition of is consistent and .

This is obvious if is a finite interval. If , then is
Hurwitz so that and

can be chosen such that for all , .
Then, , and

(11)

Theorem 2 (Lower Bound for the Convergence Radius): The
family defined in Proposition 1 belongs to .
Moreover, let be the radius of convergence
of at . Equation has either one
solution denoted (case 1) or zero solution (case 2), in .
Let be defined by

(case 1) (12)

(case 2) (13)

Then, the convergence radius of the gain bound function is
greater than .

The proof of Theorem 2 is based on tools from analytic com-
binatorics [12]. The key steps are the following.
Step 1) The recursive kernel construction formula (in

Proposition 1) is exploited to obtain a majorizing
sequence of the kernel norms.

Step 2) The associated generating function is proved
to satisfy the implicit equation .
The function only involves , and the
norms of operators and .

Step 3) Function is proved to be analytic at . A
lower bound for its convergence radius is derived
using the singular inversion theorem (case 1) and the
analytic inversion lemma (case 2) (see e.g., [12]).
This gives a lower bound for the convergence radius
of the gain bound function .

Proof:
Step 1: We prove by induction that, for all ,

belongs to and satisfies

(14)

with , and, for all

(15)

where and are given in Definition 5.
Indeed, following Remark 3, belongs to and (14) is

satisfied for . Now, by induction, let and assume
that for , and .
Let . Then, from Proposition 1 and denoting

(16)
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with, for all and such that

(17)

(18)

(19)

(20)

Now, for , , , and

(21)

Moreover, for and

(22)

Hence, from (17)–(22) and since

(23)

is finite.
For , and

Hence, from (19)–(20) and using (22) with and
instead of

(24)

is finite. From (16), (23), and (24), is in and (14) holds.
Step 2: Consider the formal series

and

with and .
Then, from (15)

Therefore, . Since

, it follows that , where
is defined by (9).

Step 3: From (14), is a majorizing series of the gain
bound function . Moreover, from Step 2 and Lemma A (in
Appendix A), is analytic at 0, and its convergence radius is
given by (12) and (13), which concludes the proof.

The following algorithm for the computation of is deduced
from Theorem 2.

Algorithm 1 (Computation of ): The following computa-
tion steps can be performed either numerically or analytically.

1) Compute , , and (see Definition 5).
2) Compute the positive solution of equation

if any.
3) Compute using (12) and (13).

From Theorems 1 and 2, the convergence of the Volterra series
expansion with the kernels given in Proposition 1 is guaranteed
if , where

(25)

Remark 4: In practice, most systems fall into case 1. The class
of systems with entire nonlinearities , falls into case 1 ex-
cept if and ( is affine), which falls into case 2.
Another example for case 2 is obtained for system

. In this case, for
, ,

with , and . Simulations
show that this is the stability limit of the system, so is a tight
bound.

Remark 5: The bound is not guaranteed to be optimal
because of (21), (23), and (24), however optimality is reached
in some cases (see examples in Section IV).

Remark 6: When both and are collinear to , can be
replaced by in the proof of Theorem 2 and in the
algorithm that provides more accurate bounds.

Remark 7: In the case where exact computations of ,
, or are not possible, upper bounds of these coefficients

can be used in Algorithm 1. Indeed, the induction in Step 1
remains valid when using such upper bounds. However, obvi-
ously, this leads to underestimated values for .

Remark 8: If , the following simplifications occur.
• has the form

(26)

with ,
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• the equation satisfied by (case 1) becomes

(27)

• is given by

(28)

Moreover, since , an underestimated
bound of is given by .

The Volterra series is a bounded solution of (1)–(5), as stated
in the following theorem.

Theorem 3 (Bounded Solution): For all , the Volterra
series with kernels converges to a bounded solution
of (1)–(5) in the sense of definition 1.

The proof is detailed in Appendix B.
Finally, a -norm bound of the truncation error of the series

can be computed.
Theorem 4 (Truncation Error Bound): For all ,

denote and

. Then, for all , the
remainder of the truncated Volterra series satisfies

Moreover, in case 1 of Theorem 2

(29)

Proof: The gain bound function is dominated by the gen-
erating function (see the proof of Theorem 2, Steps 2–3).
Then, for all

Moreover, in case 1, the restriction of to is a positive
strictly increasing bijection from to with positive
Taylor coefficients (see Lemma A in Appendix A). Function
is normally convergent on any closed disk with ra-
dius . Hence, Cauchy estimates on yield

. For
, the limit leads to . Finally, Cauchy es-

timates for yield (29), which concludes the proof.

IV. EXAMPLES

In this section, several examples are presented, for which an-
alytic computations are possible.

A. 1-D System With Third-Order Nonlinearity

We start with a very simple 1-D toy example with a polyno-
mial nonlinearity. Let , , and consider the fol-
lowing system:

(30)

with zero initial conditions and scalar bounded signal
input . It has the form (1)–(5) with , , ,

Fig. 1. (Example IV-A, case � � �) Numerical computation of� for� � ����,
� � ������� with � � ���� � � � � in (a) and (b) and � � ���� � � in
(c). (b) is a zoom of (a).

, . Following the steps of Algorithm 1,
we compute the convergence radius of the Volterra series for an
infinite time horizon ( ).
Step 1) , , for all ,

except for , where , and for
all , so is given by (26) with

Step 2) satisfies (27), that is, . The unique
positive solution is

Step 3) We compute , e.g., using (28), which leads to

Numerical simulations are performed with and
so that . The input is constant and equal

to on and jumps to on .
1) Case (Fig. 1): Simulations show that is in-

deed the radius of convergence of the Volterra series: For
, it converges to the trajectory of the nonlinear system [see
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Fig. 2. (Example IV-A, case � � �) Numerical computation of � for � � ����,
� � �������� with � � ��� � � . A high value of � is chosen in order to see
the otherwise slow divergent behavior of the Volterra series expansion.

Fig. 3. (Example IV-A) Convergence radius proposed in [7] is a function of a
parameter 	 (denoted � in [7]). The best estimate is obtained here at 	 � ���.

Fig. 1(a) and (b)], whereas for , it becomes divergent [see
Fig. 1(c)]. In Fig. 1(c), it can also be seen that is the BIBO
stability limit of the system at 0 since the trajectory of the non-
linear system is not bounded any more.

2) Case (Fig. 2) : As pointed out in [6], considering
(30) for complex parameters, , (with ) or complex
signals , the convergence radius is also a tight bound. Numer-
ical simulations show that the Volterra series expansion diverges
very slowly from the nonlinear system for (see Fig. 2),
which shows once again that the bound obtained for the radius of
convergence is tight. However, the nonlinear system restricted
to real valued signals is BIBO stable at 0 for any bounded input.
Hence, for this type of system, Volterra series expansion con-
vergence radius does not coincide with the BIBO stability limit
of the system at 0.

3) Comparison to Other Results: Most convergence results
on Volterra series require an explicit estimation of the asymp-
totic behavior of the kernel norms. This is not easy except for
particular systems (exact computations are available for bilinear
and quadratic systems [6], [7], [16], and our algorithm pro-
vides similar results). For systems (1)–(5) such that , a
convergence condition has been proposed in [7, Theorem 3.1],
which is given by (using our notations)

, where

and . Here,

and

reaches its maximal value at (see Fig. 3).
Although comparisons between and are not pre-

Fig. 4. (Example IV-B) Radius of convergence � as a function of 
 for 
 �
��� �	 and � � ���� and ��� � �������.

sented for the following examples, it has been checked that
(here, 0.267) is lower than (here, 1).

B. Similar Example With a Nonzero Contribution

Consider the slightly complexified version of the previous ex-
ample given by

(31)

which has a nonzero , given by with .
Computations in Algorithm 1 are modified as follows.
Step 1) so and is given by (9)

with

Step 2) (computed numerically) is the unique positive so-
lution of , that is, of

.
Step 3) We numerically compute .

The radius of convergence is plotted in Fig. 4 for
(values for and are equal) and the same parameters as in
Section IV-A ( and ). As expected, the
convergence radius is 1 for and decreases for .
Moreover, for , and .

C. Saturated Stabilization

Consider here the following 1-D system:

(32)

where and the initial state . It is represen-
tative of the frequently encountered situation where an unstable
linear system ( ) is stabilized by a linear state feed-
back ( ), but the stabilizing signal is saturated by a static
function.

For constant causal inputs , the stability anal-
ysis shows that the system is stable if with

with

and is unstable if .
The Taylor expansion of the saturating function around

is given by with
, , , and more generally,

, where the ’s
denote the Bernoulli numbers [1, (4.5.64)]. For an infinite time
horizon ( ), we have the following.
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Fig. 5. (Example IV-C) � (solid line) and � (dashed line) as functions of
� .

Step 1) , for all
and . Since

, it follows that
and that the gain bound function is given by

Step 2) satisfies (27), that is, . The
unique positive root of this equation is

Step 3) Using (28), we obtain

with

Fig. 5 displays the values of and for , as a function
of the feedback gain . It shows that for moderate values of ,

, and are close. For constant inputs greater than , we
checked numerically that the Volterra series is slowly divergent.
Nevertheless, interesting approximations are given by the series
truncated at order such that is the smallest term of
the Taylor expansion of the dominant function . Further
investigations on divergent series will be performed in a future
work.

Fig. 6 shows a simulation obtained with a constant input of
during 10 s, followed by a jump to a sinusoidal input cen-

tered on , with an amplitude of and a frequency of
0.8 Hz until s. From s to s, the input
is a decreasing ramp to zero. From 0 to 10 s, the input is a low
frequency (constant) signal, close to the convergence bound of
the series. The linear approximation is very poor, the third-order
one is much better, and the series truncated at order 5 give ex-
tremely good results. Between 10 and 20 s, the signal is set on
a higher frequency than the bandwidth of the underlying linear
system, so that, due to the low pass effect, the linear approxima-
tion is acceptable and the third-order one is very good, although
the input reaches the convergence bound in infinite norm. The
end of the simulation corresponds to an input with decreasing
amplitude, so that the linear approximation becomes better at
the end of the simulation, and the third-order one is quite accu-
rate.

D. Two Second-Order Systems

1) System With a Nonlinear Damping: Let , ,
, and consider the following system:

(33)

Fig. 6. (Example IV-C) Simulation for a dynamic input.

Fig. 7. Example IV-D1 : Numerical computation of the speed � for � � �,
� � �, with � � � .

with zero initial conditions and scalar bounded signal input .
The nonlinearity corresponds to a damping if . It takes the
form (1)–(5), where is associated with the euclidean

norm. The state is and ,

, , .

Note that .

For a given time interval , the corresponding con-
vergence radius is computed as follows.
Step 1) For all , , except ,

so is given by (26) with .
Step 2) satisfies (27), that is, . The

unique positive solution is .
Step 3) Computing , e.g., using (28), leads to

Moreover, in this example and following Remark 6, can be
replaced by in the algorithm. For each , the value
of is computed numerically.

Fig. 7 displays a numerical simulation with , ,
, and so that . The input switches

every time unit from to , with . The system is ad-
equately approximated by the series truncated at order 5. For
higher values of , the Voterra series expansion becomes slowly
divergent.

2) Damped Pendulum: Let , , and consider
the system zero initial conditions and input governed by

(34)
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Fig. 8. (Example IV-D2) � as a function of �.

Fig. 9. (Example IV-D2) Function � �� � for a damping � � � (solid line)
and � � �� (dashed line). The convergence radius for � � �� ( � ) is
� � ��� for � � � and � � ���� for � � ��.

Like in the previous example, the state is

with , ,

and

. Note that .

In this case, for , is computed as the following.
Step 1) For all , , , and

, so is given by (26) with

Step 2) satisfies (27), that is, .
The unique positive solution is

Step 3) Computing , e.g., using (28), leads to

Again (see Remark 6), can be replaced by in the al-
gorithm. The stability limit for constant inputs of the nonlinear
system is . Fig. 8 displays the values of as a func-
tion of the damping , and Fig. 9 the values of as a function
of . As it could be expected, is an increasing function of
and a decreasing function of .

In Fig. 10, a simulation is performed for and a constant
input with ( ). The angular position

Fig. 10. (Example IV-D2) Simulation for � � �, � � ���, and a constant
input � � � � 	. The angular position of the nonlinear system (solid line)
and those predicted by the successive Volterra series expansions are plotted.

is a slowly increasing function of time since .
It is plotted for the system and for its Volterra series expansions
up to order 9. As guaranteed by Theorem 2, the convergence is
achieved if (here, a first-order expansion proves
accurate on ). However, the convergence is not guaranteed for

, so the series is not representative of the behavior of the
system in this case. As an indicator of divergence, the smallest
term of the series expansion for orders cor-
responds to for , for ,
and for .

V. GENERALIZATION TO EXPONENTIALLY DAMPED

INPUT–OUTPUT RESULTS

In this section, we concentrate on results on the infinite in-
terval .

A. Definitions and Convergence Results

Definition 6 (Spaces , , , and ): For all ,
in and , we introduce the following sets.

• is the set of functions such that
endowed with the norm

Note that if , then .
• is defined in the same way as , replacing by and

by .
• is the set of functions such that

where
. This set is endowed with the norm defined

.

• is the set of the series such that for all
, .

Proposition 2 (Coefficients and Norm of ):
Let the system (1)–(5) and be such that

and .
Then, for all , , the coefficients defined by,

for all

(35)
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are finite and such that

where is the continuous bijective increasing
function defined for all by

and

otherwise.

Moreover, and

.
The proof is straightforward. The following function can then

be introduced.
Definition 7 (Function ): For all and ,

the function is formally defined by

where, for all and

.
Remark 9 (Links With Section III): All the definitions of this

section correspond to those of Section III for . More
precisely, , , , ,

(for all in ), and .
Theorem 5 (Generalization of Theorems 1–4): Let

and . Then, results given in Theorems 1–4 and
Algorithm 1 are still available when replacing , , ,

, and by , , , , and , respectively.
The proof is given in Appendix C.
These results indicate that if , we can compute

a (nonempty) convergence domain of inputs
decreasing at least like with for which the Volterra
series converges to a state that is guaranteed to decrease at least
like .

Remark 10: Following Remark 7, replacing and
in Algorithm 1 by the overestimated bounds given in

Proposition 2 still yields valid results.

B. Example of a 1-D System

Consider a 1-D damped system described by (1)–(5) with
, , , , ,

zero initial conditions. Let , . Moreover, denote
, ( )

and .
For such this system, the bounds given in Proposition 2

with yield the following exact quantities

, . Then,

with , is the

positive solution of and

For Example 1 (see Section IV-A), this yields
, so that and

The case leads to , ,
, and

is an increasing function of (note also that

). In particular, this illustrates that the radius of convergence
that ensures bounded states ( ) is known to be greater for
damped inputs ( ) than for bounded inputs . Hence,
the initial value of a damped input can be chosen greater than the
convergence radius computed for the BIBO case. For instance,
for , the initial value can be chosen times
greater than for .

The case leads to ,
, and

is an increasing function of from to .
Remark 11: The value such that is computed

by solving , which yields .

VI. CONCLUSION

Bounds on the convergence radius and truncation errors of
Volterra series expansions have been proposed for SI nonlinear
systems that are analytic in state and affine in input. Results
have been illustrated on several examples. The main advantages
of the method are that: 1) computable bounds are given (rather
than only existence or theoretical results); 2) the corresponding
algorithm is adapted to both exact and numerical computations;
3) results are available for several norms that are adapted to
address stable and unstable systems, bounded or exponentially
damped input-to-state results, and finite- or infinite-time hori-
zons; 4) the hypothesis required by the study on an infinite
horizon is weak, that is, the system must have a stable linear
part. When simulating systems on a finite-time horizon using
Volterra series, our method shows that relaxing the stability con-
dition on the linear part still makes sense for sufficiently small
inputs. However, in this case, the convergence radius quickly de-
creases to 0 with . The main limitations of the method are that:
1) results are available only for the “analytic linear systems,” de-
scribed in Section II-B; 2) the bound given by the algorithm can
yield an underestimated convergence radius [typically, when the
accuracy of inequality (21) becomes poor]. Our results bring a
useful contribution in all the applications where Volterra series
expansion with a guaranteed precision are needed (e.g., simu-
lation and model order reduction). It can also be used for the
characterization of stability domains of nonlinear systems, as
well as, e.g., the optimization of parameterized stabilizing con-
trollers through the maximization of the convergence radius.

The extension of these results to the multiple-input case is
under study. In the near future, we also plan to generalize the
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above results to systems that are, in addition to the above as-
sumptions, analytic in input and have nonzero initial conditions.
Another extension will consist of generalizing these results to
some classes of infinite-dimensional systems, such as boundary
and distributed controlled PDE systems solved using Volterra
series (see, e.g., [15] and [18]).

APPENDIX A
LEMMA A

Let and be
analytic functions at with nonnegative coefficients. Let

. Define , and let
be the radius of convergence of at .

Then, the following results hold.
(i) At , is nonzero and analytic with nonnegative

Taylor coefficients.
(ii) Equation has either one solution

denoted (case 1) or zero solution (case 2) in .
(iii) There exists a unique function , analytic at

such that . Its convergence
radius at is such that

(case 1) (36)

(case 2) (37)

Proof:
Assertion (i): If , (i) is straightforward. Otherwise,

has at least one positive Taylor coefficients so that, for all
such that , and

, which proves (i).
Assertion (ii): Define for
. If is affine, then so that

has no solution. Otherwise, is a strictly increasing function
on from to
since, for all , . Therefore, if

, then has a unique solution on
(case 1); otherwise ( ), it has no solution (case 2).

Assertion (iii): In case 1, the hypotheses of the sin-
gular inversion theorem (see e.g., [12, Proposition IV.5 and
Theorem VI.6]) are met, and its application proves (iii). In
case 2, (iii) is a direct consequence of the analytic inversion
lemma (see, e.g., in [12, Lemma 4.2]).

APPENDIX B
PROOF OF THEOREM 3

Proof: Let . From Theorem 2, the Volterra se-
ries (6), denoted , belongs to . Let us prove that is abso-
lutely continuous and that its time derivative belongs to .

From the kernel recursive construction formula, it follows by
induction that for all , has a partial derivative w.r.t.
that belongs to , expressed as

Moreover, denoting
and , we get

From (14) and (15), we have

so that

In the same way

and finally

The series is
therefore convergent in norm in the Banach space , and we
have

(38)

This proves that property (i) of Definition 1 is satisfied.
Equations (6) and (38) prove that the infinite sum in

the series defining and the time derivative can be com-
muted. Hence, from Proposition 1, is a solution of (1)–(5).
This proves property 1 of Definition 1 and concludes the proof
of the theorem.
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APPENDIX C
PROOF OF THEOREM 5

Let , , , .
Extended Theorem 1: the adaptation of the proof relies on

the following inequalities:

and on the use of the gain bound function derived from the
-norms.
Extended Theorem 2: Only the first step of the proof needs

to be modified as follows. Equations (14) and (15) are adapted
using and , (see Definition 7). Moreover, the

left-hand side of (16) becomes ,
and (17) becomes

Equation (19) becomes ,
and (22) becomes

so that (23) is valid with . Similar modifications are per-
formed to obtained the new version of (24).

Extended Theorem 3: The proof is straightforward by in-
cluding the exponential weights in the formula of the original
proof.

Extended Theorem 4: The proof is unchanged (using the
new spaces , , and the new quantities , ).
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